Error Estimation and Adaptivity for Stochastic Collocation Finite Elements Part II: Multilevel Approximation

نویسندگان

چکیده

A multilevel adaptive refinement strategy for solving linear elliptic partial differential equations with random data is recalled in this work. The extends the a posteriori error estimation framework introduced by Guignard and Nobile 2018 [SIAM J. Numer. Anal., 56 (2018), pp. 3121–3143] to cover problems nonaffine parametric coefficient dependence. suboptimal, but nonetheless reliable convenient, implementation of involves approximation decoupled PDE common finite element space. Computational results obtained using such single-level are presented Part I work [A. Bespalov, D. Silvester, F. Xu, SIAM Sci. Comput., 44 (2022), A3393–A3412]. Results potentially more efficient strategy, where meshes individually tailored, discussed herein. demonstrate that optimal convergence rates can be achieved, only when specific types problems. codes used generate numerical available on GitHub.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori error estimation for the stochastic collocation finite element method

In this work, we consider an elliptic partial differential equation with a random coefficient solved with the stochastic collocation finite element method. The random diffusion coefficient is assumed to depend in an affine way on independent random variables. We derive a residual-based a posteriori error estimate that is constituted of two parts controlling the stochastic collocation (SC) and t...

متن کامل

A Posteriori Error Estimation and Mesh Adaptivity for Finite Volume and Finite Element Methods

Error representation formulas and a posteriori error estimates for numerical solutions of hyperbolic conservation laws are considered with specialized variants given for the Godunov finite volume and discontinuous Galerkin finite element methods. The error representation formulas utilize the solution of a dual problem to capture the nonlocal error behavior present in hyperbolic problems. The er...

متن کامل

Error estimation and adaptivity for incompressible hyperelasticity

A Galerkin FEM is developed for nonlinear, incompressible (hyper) elasticity that takes account of nonlinearities in both the strain tensor and the relationship between the strain tensor and the stress tensor. By using suitably defined linearised dual problems with appropriate boundary conditions, a posteriori error estimates are then derived for both linear functionals of the solution and line...

متن کامل

Error Estimation and Atomistic-Continuum Adaptivity for the Quasicontinuum Approximation of a Frenkel-Kontorova Model

We propose and analyze a goal-oriented a posteriori error estimator for the atomisticcontinuum modeling error in the quasicontinuum method. Based on this error estimator, we develop an algorithm which adaptively determines the atomistic and continuum regions to compute a quantity of interest to within a given tolerance. We apply the algorithm to the computation of the structure of a crystallogr...

متن کامل

Stochastic collocation and mixed finite elements for flow in porous media

The aim of this paper is to quantify uncertainty of flow in porous media through stochastic modeling and computation of statistical moments. The governing equations are based on Darcy’s law with stochastic permeability. Starting from a specified covariance relationship, the log permeability is decomposed using a truncated Karhunen-Loève expansion. Mixed finite element approximations are used in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2023

ISSN: ['1095-7197', '1064-8275']

DOI: https://doi.org/10.1137/22m1479361